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Abstract

The stochastic response of a multi‐degree‐of‐freedom nonlinear dynamical system is

determined based on the recently developed Wiener path integral (WPI) technique.

The system can be construed as a representative model of electrostatically coupled

arrays of micromechanical oscillators, and relates to an experiment performed by

Buks and Roukes. Compared to alternative modeling and solution treatments in the

literature, the paper exhibits the following novelties. First, typically adopted linear, or

higher‐order polynomial, approximations of the nonlinear electrostatic forces are

circumvented. Second, for the first time, stochastic modeling is employed by

considering a random excitation component representing the effect of diverse noise

sources on the system dynamics. Third, the resulting high‐dimensional, nonlinear

system of coupled stochastic differential equations governing the dynamics of the

micromechanical array is solved based on the WPI technique for determining the

response joint probability density function. Comparisons with pertinent Monte Carlo

simulation data demonstrate a quite high degree of accuracy and computational

efficiency exhibited by the WPI technique. Further, it is shown that the proposed

model can capture, at least in a qualitative manner, the salient aspects of the

frequency domain response of the associated experimental setup.
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1 | INTRODUCTION

Nanowires are considered to be increasingly important structural

building blocks for future nanotechnologies. Indicatively, recent

advances in micro‐ and nano‐electro‐mechanical devices have

enabled fast, reliable, and label‐free molecular detection.1,2 Current

and future applications include the detection of chemicals and

biological species related to specific diseases. Notably, the detection

efficiency depends on various factors such as the presence of

stochasticity and nonlinearities. These factors play a key role in

understanding the detection principles and eventually optimizing the

design of nanomechanical systems and devices.

Specifically, micro/nano‐oscillators can exhibit nonlinear/hyster-

etic response behaviors due to various geometrical configurations

and damping mechanisms.3–5 Further, due to their small sizes, they

are subject to various intrinsic sources of stochastic noise such as

adsorption–desorption and thermally induced noises.6,7 Furthermore,

current technology enables the fabrication of large arrays, composed

of hundreds to tens of thousands of micro/nano‐beams, coupled by

electric, magnetic, or elastic forces. The benefit from such coupling

Int. J. Mech. Syst. Dyn. 2023;3:3–11. wileyonlinelibrary.com/journal/IJMSD | 3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. International Journal of Mechanical System Dynamics published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Science

and Technology.

http://orcid.org/0000-0002-2257-4203
mailto:ikougioum@columbia.edu
https://onlinelibrary.wiley.com/journal/27671402
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmsd2.12066&domain=pdf&date_stamp=2023-03-13


mechanisms relates to potential enhancement of the nanomechanical

system detection sensitivity; see, for instance, the pioneering

experimental work by Buks and Roukes.8

Overall, it becomes clear that optimization of the design and

enhancement of the detection capabilities of nanomechanical

systems and devices dictate, first, modeling the micro/nano‐

oscillator as a nonlinear multi‐degree‐of‐freedom (multi‐DOF)

dynamical system subject to stochastic excitation. Second, potent

uncertainty propagation methodologies are required for solving the

governing equations of motion and for determining the system

stochastic response. In other words, a high‐dimensional system of

coupled nonlinear stochastic differential equations needs to be

solved accurately and in a computationally efficient manner for

determining response statistics. In this regard, the state‐of‐the‐art

solution techniques in stochastic engineering dynamics can be

broadly divided into two categories: first, those that exhibit a high

degree of accuracy, but the associated computational cost becomes

prohibitive with an increasing number of stochastic dimensions, and

second, those that can readily treat high‐dimensional systems, but

provide reliable estimates for low‐order response statistics only. The

interested reader is directed to indicative standard books9–11 for a

broad perspective. Clearly, the development of versatile solution

techniques that exhibit both high accuracy and low computational

cost is critical for efficient stochastic response analysis of high‐

dimensional systems of coupled nonlinear micro/nano‐oscillators.

One of the promising solution techniques, recently pioneered in

the field of engineering mechanics by Kougioumtzoglou and cow-

orkers,12,13 relates to the concept of the Wiener path integral

(WPI).14,15 According to the WPI technique,16 the system response

joint transition probability density function (PDF) is expressed as a

functional integral over the space of all possible paths satisfying the

initial and final conditions in time. Next, employing a functional integral

series expansion, the contribution only of the first term is typically

considered, pertaining to the path with the maximum probability of

occurrence. This is referred to in the literature as the most probable

path and corresponds to an extremum of the functional integrand. In

this regard, the most probable path, which is used for determining the

system response joint transition PDF approximately, is computed by

solving a functional minimization problem that takes the form of a

deterministic boundary value problem.17 It is remarked that the WPI

technique is capable of treating systems exhibiting diverse nonlinear/

hysteretic behaviors18,19 and subjected to non‐white and non‐

Gaussian stochastic excitations.20 Further, it was shown by Psaros

et al.21 and by Katsidoniotaki et al.22 that the associated computational

cost can be reduced drastically by using sparse representations for the

system response PDF in conjunction with compressive sampling

concepts and tools.23

Remarkably, there are only a few papers in the literature

pertaining to stochastic modeling and analysis of nonlinear micro/

nano‐oscillators. The vast majority of these research efforts relate to

low‐dimensional (typically single‐DOF) systems, for which an

analytical or numerical solution treatment is tractable.24–28 The few

papers referring to large arrays of coupled micro/nano‐beams

modeled as high‐dimensional multi‐DOF systems rely on significant

simplifications and approximations that reduce, unavoidably, the

accuracy degree of the stochastic response estimates. Indicatively, a

moments equations solution approach was used by Ramakrishnan

and Balachandran29 for determining the stochastic response of an

array of microcantilevers under the assumption of weak coupling.

Note, however, that the approximations inherent in the standard

moments equations solution scheme9 render it capable of yielding

relatively accurate estimates only for the system response first‐ and

second‐order statistics (i.e., mean vector and covariance matrix). In

this context, it can be argued that developing efficient and robust

procedures for designing and optimizing nanomechanical systems

requires the determination of the complete joint response PDF, or at

least, of lower‐dimensional joint PDFs corresponding to selected

response coordinates of interest. In this regard, additional informa-

tion relating, for example, to low‐probability events (e.g., failures), and

obtained by accurate estimation of the response PDF tails, can be

integrated into the optimization methodology, leading to enhanced

design. To this aim, the response PDF of a 100‐DOF micromechanical

system30 was determined accurately and in a computationally

efficient manner by Petromichelakis and Kougioumtzoglou.31 This

was done by developing a variational formulation of the WPI

technique with mixed fixed/free boundary conditions that renders

the computational cost independent from the total number of

stochastic dimensions.

In this paper, attention is directed to an experiment performed

by Buks and Roukes8 pertaining to an array of coupled micro-

resonators. In particular, the authors examined the collective

behavior of a 67‐element array of electrostatically actuated, doubly

clamped gold microbeams driven near the principal parametric

resonance. In this regard, optical diffraction was used for identifying

the modal response of the system under varying parametric

excitation. Subsequently, Lifshitz and Cross32 proposed a system of

coupled nonlinear differential equations governing the response of

the microbeam array. The model comprised stiffness and damping

nonlinearities, whereas the electrostatic forces were approximated as

linear. Applying a perturbation solution treatment, it was shown that

the model captures the salient response characteristics in an average

sense. Further, the model was extended by Zhu et al.33,34 by

considering a nonlinear approximation of the electrostatic forces.

Note that the aforementioned response analyses by Lifshitz and

Cross32 and Zhu et al.33,34 were purely deterministic. In other words,

the impact of stochastic noise sources on the system modeling and

analysis was ignored. Herein, a stochastic version of the model is

considered for the first time in the literature. This takes the form of a

coupled system of nonlinear stochastic differential equations that is

solved based on the WPI technique for determining the micro-

mechanical array joint response PDF. The results are compared with

pertinent Monte Carlo simulation (MCS) data for demonstrating the

accuracy and computational efficiency of theWPI technique. Further,

it is shown that the proposed model can capture, at least in a

qualitative manner, the salient aspects of the frequency domain

response of the associated experimental setup.8
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2 | MATHEMATICAL FORMULATION

2.1 | Micromechanical system equations of motion

In the ensuing analysis, the focus is on the experimental setup by

Buks and Roukes,8 which can be construed as a representative case

of electrostatically coupled micro/nano‐resonators. In particular, the

experiment pertained to a fabricated array of 67 doubly clamped

microbeams that were parametrically excited by applying a time‐

varying voltage. In the same paper, the authors proposed a linear

model to represent the dynamics of the coupled system of microbe-

ams, that is,

x ω x QV t x x x n N¨ + − ( ) (2 − − ) = 0,   = 1, …, .n n n n n0
2 2

−1 +1 (1)

In Equation (1), N = 67 is the number of DOF, xn denotes the

displacement of the nth DOF, ω0 represents the natural frequency of

each oscillator, and V t V V t( ) = + ( )dc ac is the applied voltage, with Vdc

and V t( )ac being the constant dc and time‐varying ac components,

respectively. Further, V t V t( ) = cos(Ω )ac ac , where Vac is a constant

amplitude and ωΩ = 2 0. Furthermore, Q is a capacitance coefficient

that depends on the medium, the surface area of the beams, and the

distance between them. As anticipated based on the complex

interactions between the beams, experimental data demonstrated

the existence of higher‐order harmonics in the frequency content of

the system response. Obviously, a parametric resonance analysis

based on the theoretical linear model of Equation (1) was unable to

capture such a nonlinear response behavior.

To address the inadequacy of the linear model of Equation (1)

to capture satisfactorily the rich frequency content of the system

response, Lifshitz and Cross32 proposed a model comprising stiffness

and damping nonlinearities of the polynomial kind, that is,

x ω x g x QV t x x x

c x x x g x n N

¨ + + ϵ ( ) − ( ) (2 − − )

+ (2˙ − ˙ − ˙ ) + ϵ ( ) = 0,   = 1, …, ,

n n n n n

n n n

0
2

1 1
2

−1 +1

0 −1 +1 2 2

(2)

where

g x x( ) = n1
3 (3)

and

g x x x x x x x x x( ) = (˙ − ˙ )( − ) − (˙ − ˙ )( − ) .n n n n n n n n2 −1 −1
2

+1 +1
2

(4)

In Equation (2), ϵ1 and ϵ2 are parameters controlling the

magnitudes of the stiffness and damping nonlinearities, respectively,

and c0 is a linear damping coefficient. Applying a perturbation solution

treatment to the nonlinear Equation (2), it was shown32 that the model

can predict, qualitatively, the salient aspects of the system response in

the frequency domain. Note, however, that the electrostatic forces

were approximated as linear, in a similar manner as in Equation (1). In

fact, this simplification was justified32 by arguing that the effect of the

elastic cubic nonlinearities g x( )1 is significantly stronger relative to the

electrostatic force nonlinearities, particularly for the case of small

beam thickness compared to the gap between adjacent beams.

To enhance the accuracy of the model of Equation (2) and to also

account for more general cases of microbeam arrays, where the gap

between adjacent beams is comparable to their thickness (see

Figure 1 for an indicative schematic representation), Equation (2)

becomes

x ω x g x QV t g x c x x x

g x n N

¨ + + ϵ ( ) − ( ) ( ) + (2˙ − ˙ − ˙ )

+ ϵ ( ) = 0,   = 1, …, ,

n n n n n0
2

1 1
2

3 0 −1 +1

2 2

(5)

where

g x
x x x x

( ) =
1

(1 + − )
−

1

(1 + − )
.

n n n n
3

+1
2

−1
2 (6)

Clearly, the electrostatic forces in Equations (5) and (6) are

modeled as nonlinear, exhibiting a decaying behavior with increasing

relative distance between the beams. In fact, Zhu et al.33,34

considered an approximation of Equation (6) by utilizing the first

two terms of a Taylor expansion of the nonlinear electrostatic forces.

It was shown, based on parametric resonance analysis, that the

system response showed a more complex frequency content

compared to the model of Equation (2). In passing, note that the

linear assumption for the electrostatic forces in the models of

Equation (1) and Equation (2) is equivalent to considering the first

term only of a Taylor expansion of the nonlinear electrostatic forces.

In all previous models, the impact of stochastic noise sources6,7

on the system modeling was ignored and the response analyses

were purely deterministic. In this paper, a stochastic version of the

model of Equation (5) is examined for the first time in the literature

by considering a stochastic excitation component. Specifically,

Equation (5) is cast in the matrix form

Mx Cx Kx g x x w¨ ˙ ˙ t t+ + + ( , , ) = ( ), (7)

where x M C Kx x= [ , …, ] , , ,N1
T denote the N N× mass, damping, and

stiffness matrices, respectively, given by

F IGURE 1 An array of coupled micromechanical oscillators and
an indicative, approximate model.
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⋯
⋮ ⋱ ⋮

⋯












M =

1 0

0 1
(8)

⋯

⋱ ⋱ ⋮

⋮ ⋱ ⋱

⋯












C

c c

c

c

c c

=

2 − 0

−

−

0 − 2

0 0

0

0

0 0

(9)

⋯

⋮ ⋱ ⋮

⋯












K

ω

ω

=

0

0

0
2

0
2

(10)

and


















x xg t x x x x x

x x x x

QV t
x x x x

(˙ , , ) = ϵ + ϵ ((˙ − ˙ )( − )

− (˙ − ˙ )( − ) )

− ( )
1

(1 + − )
−

1

(1 + − )

.n n n n n

n n n n

n n n n N

1
3

2 −1 −1
2

+1 +1
2

2

+1
2

−1
2

×1

(11)

Further, the excitation vector w t( ) represents a Gaussian

white noise stochastic process with w wE t E t[ ( )] = [ ( )] = 0l l+1 and

w w SE t t δ t t[ ( ) ( )] = ( − )l l w l l
T

+1 +1 , where t t,l l+1 are two arbitrary

time instants and Sw denotes an N N× power spectrum matrix

given by

⋯

⋮ ⋱ ⋮

⋯












S

S

S

=

0

0

.w

0

0

(12)

2.2 | Micromechanical system stochastic response
determination

In this section, the WPI technique developed by Kougioumtzoglou

and coworkers12,13,16–22 for determining the stochastic response

of diverse dynamical systems is employed for computing the joint

response PDF of the array of coupled microbeams presented in

Section 2.1. Specifically, the reduced‐order WPI formulation

developed by Petromichelakis and Kougioumtzoglou31 is utilized

next for determining any p‐dimensional joint response PDF of the

system of Equation (7), where p N≤ 2 . This is done in a direct,

computationally efficient manner, without computing the N2 ‐

dimensional joint PDF first and subsequently marginalizing. In the

following, the fundamental aspects of the technique are presented

for completeness.

It has been shown15 that the joint response transition PDF

x x x xp ˙ t t( , , , ˙ , )f f f i i i can be expressed as a functional integral in

the form

 

 


∫ ∫x x x x x x x xp t t t t( , ˙ , , ˙ , ) = exp − ( , ˙ , ¨)d [d ( )],f f f i i i

C t

t

i

f

(13)

where x x x xt ˙ t= { , ˙ , ; , , }i i i f f f is the set of all possible paths with the

initial condition x x t{ , ˙ , }i i i and the final condition x x xt t{ , ˙ , }, d ( )f f f

denotes a functional measure, and represents the Lagrangian

functional of the system of Equation (7) given by

x x x Mx Cx Kx g x x S

Mx Cx Kx g x x

¨ ˙ t

¨ ˙ t

( , ˙ , ¨) =
1

2
{ + + + (˙ , , )}

{ + + + (˙ , , )}.

w
T −1

(14)

It is remarked that analytical evaluation of the functional integral

of Equation (13) is, in general, an impossible task. Thus, researchers

resort, routinely, to the most probable path approximation; that is,

only the path x t( )c is used for the approximate evaluation of Equation

(13) for which the stochastic action ∫ x x x t= ( , ˙ , ¨)dt

t

i

f is minimized.

According to calculus of variations,35 an extremal of can be

determined by enforcing the necessary condition that the first

variation equals zero, that is, δ = 0. Next, using a Taylor‐type

expansion for and integrating by parts, the condition δ = 0

becomes31






















∫

∑ ∑

∑

t
δx δx

t t
δx t

−
d

d
+ [ ˙ ]

+ −
d

d
+

d

d
d = 0.

n

N

x x n

t

t

n

N

x n t
t

n

N

t

t

x x x n

=1
˙ ¨

=1
¨

=1
˙

2

2 ¨

n n

f

n
f

f

n n n

0

0

0

(15)

Further, considering fixed initial and final boundary conditions, all

variations δxn and δẋn equal zero at the boundaries, and thus, the first

two terms in Equation (15) vanish. In this regard, Equation (15) leads

to the Euler–Lagrange equations

t t
n N−

d

d
+

d

d
= 0,   = 1, …,x x x˙

2

2 ¨n n n (16)

to be solved in conjunction with the N4 × boundary conditions

x t x x t x x t x x t x n N( ) = , ˙ ( ) = ˙ , ( ) = , ˙ ( ) = ˙ ,   = 1, …,n i n i n i n i n f n f n f n f, , , ,

(17)

for computing the most probable path x t( )c . Furthermore, substitut-

ing x t( )c into Equation (13), a specific point of the joint response

transition PDF is determined approximately as

 

 


∫x x x x x x xp t t C t( , ˙ , , ˙ , ) = exp − ( , ˙ , ¨ )df f f i i i

t

t

c c c
i

f

(18)

where C is a normalization constant.

Clearly, in general, the boundary value problem of Equations (16)

and (17) is not amenable to an analytical solution treatment, and

therefore, numerical schemes are required. In this regard, adopting a

brute‐force solution approach, for a specific time instant tf , the values

of the joint response PDF are computed based on Equation (18) over

a discretized PDF domain of L points in each dimension. This yields

L N2 boundary value problems to be solved for an N‐DOF system

governed by Equation (7). Obviously, this leads to an exponential

increase in the computational cost with increasing numberN of DOF.

Eventually, the associated cost becomes prohibitive for large values

of N, such as N = 67 used in the experiment by Buks and Roukes.8

To circumvent this limitation, Petromichelakis and

Kougioumtzoglou31 developed a variational formulation with mixed

fixed/free boundaries that yields, in a direct manner, a joint

response PDF u v x xp t t( , , , ˙ , )f i i i corresponding to a subset only of

the components of the response vectors xf and ẋf , that is,

6 | KATSIDONIOTAKI ET AL.
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∈u x n U= { }n f, and ∈v x n V= {˙ }n f, , where U and V are arbitrary

subsets U V N, {1, …, } with cardinalities  p U= and  q V= , respec-

tively. Notably, the p q( + )‐dimensional joint response PDF

u v x xp t t( , , , ˙ , )f i i i , where p q N+ ≤ 2 , can be determined at a compu-

tational cost that is exponentially related to the dimension p q+ of

the target PDF only and is independent from the dimension N2 of the

original system.

In this regard, the path integral representation of Equation (13)

becomes

 

 


∫ ∫u v x x x x x xp t t t t( , , , ˙ , ) = exp − ( , ˙ , ¨)d [d ( )],f i i i

C t

t

i

f

(19)

where x x u vt t= { , ˙ , ; , , }i i i f denotes the set of all possible paths with

the initial state x x t{ , ˙ , }i i i and the final state u v t{ , , }f . Note that the

coordinates xn f, with n U and ẋn f, with n V are considered free.

The most probable path, denoted by x t( ) in this case, depends on the

choice of U and V , since these sets specify which coordinates of x

and ẋ are fixed at the endpoint t t( = )f . According to the fundamental

lemma of calculus of variations,35 the derived Euler–Lagrange

Equation (16) is satisfied also by x corresponding to the general

class of functions x t( ) with arbitrary boundary conditions. Further, for

the case of mixed fixed/free boundary conditions considered herein,

there are terms in the first two summations of Equation (15) that do

not vanish for n U and n V . In summary, Equation (15) leads to

the Euler–Lagrange Equation (16) in conjunction with the boundary

conditions, for n N= 1, …, ,

∈

∈

































[ ]

x t x

x t x

n U

x t x n U

n V

x t x n V
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Finally, solving Equations (16) and (20) numerically yields the

most probable path  tx( ), and a specific point of the (lower‐

dimensional) joint response PDF is obtained as

   

 


∫u v x x x x xp t ˙ t C ˙ t( , , , , ) = exp − ( , , ¨)d .f i i i

t

t

i

f

(21)

It is clearly seen that theWPI technique variational formulation

with mixed fixed/free boundaries can reduce the associated

computational cost drastically by determining directly any lower‐

dimensional joint response PDF. This capability is particularly

advantageous for problems where the interest lies in few p q( + )

specific DOF whose stochastic response is critical for the design

and optimization of the N2 ‐DOF system. In this regard, the L N2

boundary value problems required to be solved by the standard

formulation of the technique decrease to Lp q+ problems only, where

L30 < < 50 is a reasonable range of values for various diverse

engineering applications.16–19 Note that for small values of p q+

relative to N2 , it has been shown31 that the technique becomes

orders of magnitude more efficient than an alternative MCS

solution treatment.

3 | NUMERICAL EXAMPLE

In agreement with the experiment carried out by Buks and Roukes,8

consider a 67‐DOF version of the system of Equation (7) with parameter

values ω Q V V ω= 1, ϵ = 0.1, = 4 10 , = 0.05, = 0.5, Ω = 2 ,ac dc0 1
−3

0

c = 0.01, ϵ = 100 2
−3, and S = 100

−5. In the following, the WPI‐based

PDF estimates are compared with the results obtained by MCS (30 000

realizations). For theMCS, first, excitation realizations compatible with the

stochastic processw t( ) are generated.36 Second, a standard Runge–Kutta

numerical integration scheme is used for solving Equation (7) and for

determining response realizations. Finally, the system response PDF is

estimated by performing a statistical analysis on the ensemble of the

response realizations. Note that due to the specific type of nonlinearities

in Equation (11), and in particular because of the form of the electrostatic

forces, it is possible for the effective stiffness of the system to become

negative.37 This is followed, typically, by an unbounded response

behavior. Nevertheless, in the numerical example, such an event has

practically zero probability of occurrence for the selected parameters. In

fact, for relatively small values of the excitation power spectrum

magnitude S0, the restoring force in Equation (7) acts in the direction

opposite to the displacement, and the system response exhibits a

bounded behavior.

Next, to demonstrate the efficiency and reliability of the WPI

technique presented in Section 2.2, only the final displacement x10

and velocity ẋ10 corresponding to the arbitrarily chosen 10th DOF are

considered fixed; thus, p q+ = 2, and the value L = 31 is used. This

yields 312 boundary value problems to be solved for evaluating the

joint PDF p x x( , ˙ )10 10 at a given time instant. The WPI‐based joint PDF

p x x( , ˙ )10 10 is plotted in Figure 2A as it evolves with time, and is

compared in Figure 2B with MCS‐based estimates (30 000 realiza-

tions). Obviously, the WPI technique exhibits a quite high degree of

accuracy. This is further corroborated in Figure 3, where the WPI‐

based joint PDF p x x( , ˙ )10 10 is compared with MCS‐based estimates at

indicative time instants. In Figure 4, the marginal displacement and

velocity PDFs, that is, p x( )10 and p x(˙ )10 , are plotted for time instants

t s= 1 and t s= 10 . Comparisons with PDF estimates based on MCS

demonstrate an excellent degree of accuracy. Note that in this case,

the displacement PDF p x( )10 at a given time instant (or, similarly, the

velocity PDF p x(˙ )10 ) has been determined by considering only x10

fixed at tf in the WPI technique. From a computational efficiency

perspective, this translates to 31 boundary value problems to be

solved numerically for evaluating p x( )10 , which required approxi-

mately 1min of computation time, whereas the MCS based on

30 000 realizations required approximately 12 h on the same computer.

Lastly, the capability of the model of Equation (7) to reproduce,

at least in a qualitative manner, the frequency domain response of

the experimental setup by Buks and Roukes8 is demonstrated next.

Specifically, for a given value of Vdc, the frequency content of the

response is estimated by applying Fourier transform to an arbitrary

KATSIDONIOTAKI ET AL. | 7
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response displacement realization corresponding to x10. This is

produced by solving the system of Equation (7) excited by a

randomly generated white noise realization. The results are plotted

in Figure 5, which shows quite similar characteristics to Figure 5 in

Buks and Roukes.8 Clearly, the stochastic nonlinear model of

Equation (7) proposed herein is capable of capturing, to a large

extent, the salient aspects of the rich frequency content of the

system response.

4 | CONCLUDING REMARKS

In this paper, an experimental setup by Buks and Roukes8 has been

considered as a representative case of electrostatically coupled

arrays of micro/nano‐resonators. Compared to alternative, earlier

modeling and solution treatments in the literature,32–34 the paper

exhibits the following novelties: (a) typically adopted linear, or

higher‐order polynomial, approximations of the nonlinear elec-

trostatic forces have been circumvented; (b) probabilistic model-

ing has been used for the first time in the literature by

considering a stochastic excitation component representing the

effect of diverse noise sources on the system dynamics; (c) the

resulting high‐dimensional, nonlinear system of coupled stochas-

tic differential equations governing the dynamics of the micro-

beam array has been solved based on a recently developed

WPI technique for determining the response joint PDF. Compari-

sons with pertinent MCS data have demonstrated that the

WPI technique exhibits a quite high degree of accuracy and

computational efficiency. Further, it has been shown that the

F IGURE 2 Evolution over time of the joint response PDF
p x x( , ˙ )10 10 . (A) WPI and (B) MCS estimates (30 000 realizations). The
three isosurfaces correspond to PDF values of 10 (light blue), 200
(blue), and 900 (yellow). MCS, Monte Carlo simulation; WPI, Wiener
path integral.

F IGURE 3 Joint response displacement and velocity PDF p x x( , ˙ )10 10 at two arbitrary time instants and comparisons with MCS data (30 000
realizations): (A) WPI (t = 1 s), (B) MCS estimate (t = 1 s), (C) WPI (t = 10 s), and (D) MCS estimate (t = 10 s). MCS, Monte Carlo simulation; WPI,
Wiener path integral.

8 | KATSIDONIOTAKI ET AL.
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proposed model can capture, to a large extent, the salient

aspects of the rich frequency content of the system

response, and can reproduce, at least in a qualitative manner,

the frequency domain response of the experimental setup by

Buks and Roukes.8

Overall, the WPI technique exhibits, remarkably, both high

accuracy and low computational cost. This unique aspect can

facilitate the stochastic response analysis of large arrays of

micromechanical oscillators to unprecedented levels, thus leading,

hopefully, to a paradigm shift in the optimization and design of such

systems and devices.
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F IGURE 4 Marginal PDFs p x( )10 and p x(˙ )10 at t = 1 s and t = 10 s obtained by the WPI technique. Comparison with MCS (30 000
realizations). MCS, Monte Carlo simulation; WPI, Wiener path integral.

F IGURE 5 Response frequency content estimate as a function of voltage Vdc.
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